HCF/LCM/Prime factors Mark Scheme

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Topic	Number and Algebra
Sub Topic	HCF/LCM/Prime factors(Powers and roots)
Booklet	Mark Scheme

Time Allowed: 60 inutes

Score: /51
Percentage: /100

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	75%	70%	60%	55%	50%	$<50 \%$

| Question
 Number | Working | Answer | Mark | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 .}$ Fully correct factor tree or repeated division
 or $2,2,2,5,5$ or $2 \times 2 \times 2 \times 5 \times 5$ 3 M2
 M1 for factor tree or repeated
 division with 2 and 5 as factors
 $2^{3} \times 5^{2}$ A1
 Also accept $2^{3} .5^{2}$
 Total 3 marks | | | | |

2. (a)	$\begin{aligned} & 75=3 \times 5^{2} \text { and } 90=2 \times 3^{2} \times 5 \\ & \text { or } 1,3,5,15,25,75 \text { and } \\ & 1,2,3,5,6,9,10,15,18,30,45,90 \\ & \text { or } 3 \times 5 \end{aligned}$		2		Need not be products of powers; accept products or lists ie 3,5,5 and 2,3,3,5 Prime factors may be shown as factor trees or repeated division
		15		A1	
(b)	$\quad \times 3^{2} \times 5^{2}$ oe eg $6 \times 3 \times 5^{2}$ or $75,150,225,300,375,450$ and $90,180,270,360,450$		2		Also award for $\frac{75 \times 90}{15}$
		450		A1	
					Total 4 mark

| 3. | A product of 3 or more factors of 300
 of which at least 2 are different primes
 (i.e. from 2, 3 or 5) | All 5 correct prime factors \& no extras
 (ignore 1's) | e.g $2 \times 3 \times 50$ (must multiply to 300)
 could be implied from a factor tree or division ladder |
| :--- | :--- | :--- | :--- | :--- |

4. (a)	$\begin{aligned} & 54=2 \times 3^{3} \text { and } 90=2 \times 3^{2} \times 5 \\ & \text { or } 1,2,3,6,9,18,27,54 \\ & \text { and } \\ & 1,2,3,5,6,9,10,15,18,30,45,90 \\ & \text { or } 2 \times 3^{2} \text { oe } \end{aligned}$		2		Need not be products of powers; accept products or lists eg $2,3,3,3$ and $2,3,3,5$ accept 9, 2, 3 and 9, 2, 5 (may be seen in a Venn diagram or may be shown as factor trees or repeated division)
		18		A1	cao
(b)	$\begin{aligned} & 2 \times 3^{3} \times 5 \text { oe eg } 6 \times 9 \times 5 \\ & \text { or } 54,108,162,216,270 \\ & \text { and } 90,180,270 \end{aligned}$		2	M1	Need not be products of powers; accept products or lists $\text { eg } 2,3,3,3,5$
		270		A1	cao
					Total 4 m

5.	Factor tree or repeated division with 2 or more correct prime factors $(2,2,3,17)$ Fully correct factor tree or repeated division or 2, 2, 3, 17	$2 \times 2 \times 3 \times 17$	3	M1 M1 A1	condone 1s; factors must multiply to 204 condone 1s
					Total

6.	Product of positive integer powers of both 3 and 5 only	2	M1	Powers and/or products may be evaluated eg 15		
			$3^{2} \times 5$ or 45		A1	Also accept 9 $\times 5$
						Total 2 marks

Question	Working	Answer	Mark	Notes
7.	$20=2^{2} \times 5$ and $24=2^{3} \times 3$ or $2^{3} \times 3 \times 5$ or $20,40,60,80,100,120$ and $24,48,72,96,120$		2	M1
		120		A1 \quad or $2^{3} \times 3 \times 5$ oe
				Total 2 marks

8.	Fully correct factor tree or repeated division to reach prime factors (condone inclusion of 1's) or $3,5,5,11$ or $3 \times 5 \times 5 \times 11 \times 1$		M2 Factors must multiply to 825		
		$3 \times 5 \times 5 \times 11$	3		If not M2 then M1 for correct but incomplete factor tree/
---:					
division ladder which includes 2 different primes.					
(e.g. $25 \times 3 \times 11$)					

Question	Working	Answer	Mark	Notes
9. (a)	$252=2 \times 126=2 \times 2 \times 63=2 \times 2 \times 3 \times 21$			M1 for a process that isolates at least 2 correct prime factors e.g. $252=2 \times 126,126=3 \times 42$ or a factor tree with 2 primes from 2,3 or 7 identified or repeated division
		$2 \times 2 \times 3 \times 3 \times 7$	2	A1 for $2 \times 2 \times 3 \times 3 \times 7$ oe with correct prime factors
(b)	$2^{2} \times 3^{2} \times 7 \times 2^{4} \times 3 \times 5$			M1 " $2^{2} \times 3^{2} \times 7$ " $\times 2^{4} \times 3 \times 5$ or a fully correct factor tree or fully correct repeated division
		$2^{6} \times 3^{3} \times 5 \times 7$	2	A1 cao accept in any order
				Total 4 marks

Question		Working	Answer	Mark
10. (a)				Notes

Question	Working	Answer	Mark	Notes
11.	$2^{3} \times 3^{2}$		2	M1for identifying 2^{3} or 3^{2} or for 24, 48, 72 and 36, 72 or for an answer of 144 or 216
		72		A1accept $2^{3} \times 3^{2}$
				Total 2 marks

Ques	Working	Answer	Mark	Notes
12 a	$\begin{aligned} & 224=2 \times 112=2 \times 2 \times 56= \\ & 2 \times 2 \times 2 \times 28=2 \times 2 \times 2 \times 2 \times 14 \\ & 2 \times 2 \times 2 \times 2 \times 2 \times 7 \end{aligned}$		3	M1 for at least 2 correct steps in repeated factorisation (may be seen in a tree diagram)
				A1 2, 2, 2, 2, 2, 7 (condone inclusion of 1)
		$2^{5} \times 7$		A1 $2^{5} \times 7$ NB: Candidates showing no working score 0 marks
b	$\begin{aligned} & 56+32+16 \\ & 56+32+14 \\ & 56+28+16 \\ & \hline \end{aligned}$		2	M1 for any 3 correct distinct factors (excluding 1 and 224)
		$\begin{aligned} & \hline \text { eg. } 56,32,16 \\ & \text { or } 56,32,14 \\ & \text { or } 56,28,16 \end{aligned}$		A1 correct and have a sum between 99 and 110
				Total 5 marks

13 (a)		$2^{2} \times 5$	3	B1 for $2^{2} \times 5$ oe or 20
(ii)		$2^{3} \times 3 \times 5^{2}$		B2 for $2^{3} \times 3 \times 5^{2}$ oe or 600 (B1 for any product using powers of 2 and 3 and 5 or at least $300,600 \ldots$ and $40,80,120 \ldots$)
(b)	$8\left(=2^{n}\right)$ or 2^{3}			M1 for one correct use of index laws eg. $8^{5} \div 8^{4}$
		3		A1
			2	Total 5 ma

14.	(12 =) $2 \times 2 \times 3$ or $(120=) 2 \times 2 \times 2 \times 3 \times 5$ (condone $2,2,3$ or $2,2,2,3,5$) [factors could be seen at the end of a 'factor tree' or in a 'factor ladder'] or Venn diagram with the middle and one other region correct: Where 10 may be 2,5 and 4 may be 2,2	40	2	M1	or for a list of at least 5 consecutive multiples of 4 or a list of at least 5 factors of 120 or for $12 x=120 \times 4$ oe $(\mathrm{eg}-\times 4(=x))$ or $12 \div 4(=3)$ and $120 \div 3$ " accept $2 \times 2 \times 2 \times 5$ or $2^{3} \times 5$
					Total 2 marks

Q	Working	Answer	Mark	Notes
$\mathbf{1 5 .}$	$792=2 \times 396=2 \times 2 \times 198$ $=2 \times 2 \times 2 \times 99=2 \times 2 \times 2 \times 3 \times 33$		M1 	For at least 2 correct steps in repeated factorisation (may be seen in a tree diagram or 'ladder')
	$2,2,2,3,3,11$	$2 \times 2 \times 2 \times 3 \times 3 \times 11$		

| 16. | $20=2,2,5$
 $140=2,2,5,7$
 $420=2,2,3,5,7$ | M1
 For identifying the prime factors
 for 2 of the 3 numbers $20,140,420$
 (can be implied by a factor tree,
 repeated division or Venn
 diagram) or |
| :---: | :--- | :--- | :--- | :--- |
| For a complete Venn diagram for x | | |
| and 140 with 20 in the intersection | | |
| or | | |
| $x=20 \times 3$ or | | |
| $20 \times 7 \times y=420$ or $\frac{420}{20 \times 7}$ or | | |
| At least the 1 st 3 multiples of 20 or | | |
| $140 x=420 \times 20$ oe | | |
| Allow $2 \times 2 \times 3 \times 5$ | | |

