Proportion

Mark Scheme

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Topic	Equations, Formulae and Identities
Sub Topic	Proportion
Booklet	Mark Scheme

Time Allowed:	59 minutes
Score:	$/ 49$
Percentage:	$/ 100$

Grade Boundaries:

A^{*}	A	B	C	D	E	U
$>85 \%$	75%	70%	60%	55%	50%	$<50 \%$

| $\begin{array}{c}\text { Question } \\ \text { Number }\end{array}$ | Working | Answer | Mark | Notes |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1. (a) | $P=k Q^{3}$ | | 3 | M1 for $P=k Q^{3}$ but not for $P=Q^{3}$ |$]$

3. (a)		$81 a^{8} b^{4}$	2	B 2	B 1 for 81 B1 for $a^{8} b^{4}$
(b)		$3 c^{4}$	2	B 2	B 1 for 3 B1 for c^{4}

4. (a)	$t=k f^{2}$		3	M1 for $t=k f^{2}$ but not for $t=f^{2}$ Also award for correct equation in t, f^{2} and a constant or for $t=$ some numerical value $\times f^{2}$	
	$\begin{aligned} & 0.02=k \times 8^{2} \text { or } \\ & k=\frac{1}{3200} \text { or } \\ & k=0.0003125 \text { or } \\ & 3.125 \times 10^{-4} \end{aligned}$				for $0.02=k \times 8^{2}$ or for correct substitution into an equation which scores the first method mark (may be implied by correct evaluation of the constant)
		$\begin{aligned} & \quad t=0.0003125 f^{2} \\ & \text { or } t=\frac{1}{3200} f^{2} \end{aligned}$		A1	Award 3 marks if answer is $t=k f^{2}$ but k is evaluated in part (b)
(b)	$\begin{aligned} & f^{2}=\frac{0.0098}{0.0003125} \text { or } \\ & f^{2}=\frac{0.0098}{0.02} \times 8^{2} \end{aligned}$		2		for substitution and rearrangement into form $f^{2}=\frac{0.0098}{k}$ with their value of k except for $k=1$ or $f^{2}=\frac{0.0098}{0.02} \times 8^{2}$
		5.6 oe		A1	
					Total 5 marks

5. (a)	$y=k x^{3}$ or $k y=x^{3}$		3	M1	for $y=k x^{3}$ but not for $y=x^{3}$
	$250=1000 k$				for $250=1000 k$ Also award for $250=k \times 10^{3}$
		$y=\frac{1}{4} x^{3}$ oe			for $y=\frac{1}{4} x^{3}$ oe Award 3 marks if answer is $y=k x^{3}$ and k is evaluated as $\frac{1}{4}$ oe in part (a) or part (b)
(b)	$54=" \frac{1}{4} " x^{3}$		2	M1	dep on at least first M1 in part (a)
		6		A1	ft from $x^{3}=54 \div \frac{1}{4}{ }^{\prime \prime}$ oe
					Total 5 marks

Question	Working	Answer	Mark	Notes	
6. (a)	$D=k t^{2}$		3	M1 for $D=k t^{2}$ but n	for $D=t^{2}$
	$8=k \times 16$ oe or $8=k \times 4^{2}$			M1	
		$D=\frac{1}{2} t^{2}$		A1 \quad for $D=\frac{1}{2} t^{2}$ oe Award 3 marks i and k is evaluated part (b)	D the subject nswer is $D=k t^{2}$ s $\frac{1}{2}$ in part (a) or
(b)	$t^{2}=100$		2	M1	
		10		A1 Also accept ± 10	$\begin{aligned} & \mathrm{ft} \text { from } k t^{2}=50 \\ & \text { with } k \neq 1 \end{aligned}$
					Total 5 marks

7. (a)	$\begin{aligned} & v=k \sqrt{x} \text { oe } \\ & 8=k \sqrt{25} \text { oe } \end{aligned}$	$v=1.6 \sqrt{ } \mathrm{x}$ oe	3	M1 M1 A1 Allow $v=k \sqrt{x}$ if $k=1.6$ is found in (a) or (b).		
(b)	$(v=)$ "1.6" $\sqrt{56.25}$	12	2	$\begin{aligned} & \text { M1 ft Do not ft if } k=1 \\ & \text { A1 cao } \end{aligned}$		
						Total 5 marks

Question	Working	Answer	Mark	Notes
8. (a)	$F=\begin{gathered} " k " \\ x^{2} \end{gathered}$			M1 k must be a letter not a number
	$0.8=\begin{gathered} k \\ 5^{2} \end{gathered} \text { or } k=20$			M1 for substitution (implies first M1)
		$F=\begin{gathered}20 \\ x^{2}\end{gathered}$	3	A1 Award 3 marks for $F=\begin{gathered}" k " \\ x^{2}\end{gathered}$ and $k=20$ stated anywhere (even in (b)) unless contradicted by later work
(b)	$x^{2}=\begin{aligned} & " 20 " \\ & 320 \end{aligned} \text { or } x=\sqrt{\frac{" 20 "}{320}}$			M1 ft if $k \neq 1$ for correct rearrangement NB. The only ft is for the value of k in $F=\frac{k}{x^{2}}$
		0.25 oe	2	A1 cao (ignore \pm)
				Total 5 marks

Question	Working	Answer	Mark	Notes
9. (a)	$P=k q^{3}$		3	M1 Allow $k P=q^{3}$ oe Do not allow $P=q^{3}$
	$270=k(7.5)^{3}$ oe or $k=\frac{270}{7.5^{3}}$ oe			M1 for correct substitution in a correct equation. Implies first M1
		$P={ }_{25}^{16} q^{3}$		A1 $\quad P=0.64 q^{3}$ oe with P the subject Award M2A1 if $P=k q^{3}$ on answer line and k evaluated as $\frac{16}{25}$ in part (a) or part (b)
(b)	$\operatorname{Eg} q^{2}=\frac{25}{16}$ or $\begin{aligned} & 1 \\ & q^{2}\end{aligned}=\frac{16}{25}$ or $1=\frac{16}{25} q^{2}$ or $q^{2}=\frac{1}{0.64}$ Or $P^{2}=\frac{25}{16}$ or $\frac{1}{P^{2}}=\frac{16}{25}$ or $1=\frac{16}{25} P^{2}$ or $P^{2}=\frac{1}{0.64}$		2	M1 Correct equation involving q^{2} or p^{2} $\mathrm{ft} k$ from an equation of the form $P=k q^{3}$ if $k \neq 1$
		$1 \begin{array}{r}1 \\ 4\end{array}$		A1 $\quad \begin{aligned} & 5 \\ & \\ & \\ & 4\end{aligned}, 1.25$ [ignore 0 or negative value.]
				Total 5 marks

Question	Working ${ }^{\text {a }}$ Answer			Mark	Notes
10. (a)	$R=\begin{gathered} k \\ c^{2} \end{gathered}$ $30=\begin{gathered} k \\ 4^{2} \end{gathered} \text { or } k=480 \mathrm{oe}$	$R=\begin{gathered} 480 \\ c^{2} \end{gathered} \text { oe }$	3	M1 M1 A1	for $R=\begin{aligned} & k \\ & c^{2}\end{aligned}$ but not for $R=\begin{gathered}1 \\ c^{2}\end{gathered}$ Also award for correct equation in R, c^{2} and a constant or for $R=$ numerical value $\div c^{2}$ for $30=\begin{gathered}k \\ 4^{2}\end{gathered}$ or for correct substitution into an equation which scores the first method mark (may be implied by correct evaluation of the constant) Award 3 marks if answer is $R=\begin{gathered}k \\ c^{2}\end{gathered}$ but k is evaluated in part (b). SCB2 for correct formula for c in terms of R.
(b)	$c^{2}=\frac{480}{1920} \text { or } c^{2}=\frac{30}{1920} \times 4^{2}$	0.5 oe	2	M1 A1	M1ft for substitution and rearrangement into form $c^{2}=\frac{k}{1920}$ with their value of k substituted except for $k=1$ accept ± 0.5
					Total 5 marks

