Changing the Subject of the Formula
 Mark Scheme

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Topic	Equations, Formulae and Identities
Sub Topic	Changing the subject of the formula (Algebraic manipulation)
Booklet	Mark Scheme

Time Allowed:	$\mathbf{4 6}$ minutes
Score:	$/ 38$
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	75%	70%	60%	55%	50%	$<50 \%$

2.	$\frac{A}{2 \pi r}=r+h$ or $A=2 \pi r^{2}+2 \pi r h$	$\frac{A}{2 \pi r}-r=h$ oe	C	M1 2
A1 correct expressions				

Question Working	Answer	Mark	Notes	
4.	$y^{2}=a y^{2}+n$		5	M1
	$y^{2}-a y^{2}=n$ or			
$1=a+\frac{n}{y^{2}}$ or $1-a=\frac{n}{y^{2}}$		M1isolate terms in y^{2} or divide through by $y^{2}$$y^{2}(1-a)=n$	$y^{2}=\frac{n}{1-a}$	$\sqrt{\frac{n}{1-a}}$

Question	Working	Answer	Mark	Notes
5.	$A=(4-\pi) r^{2}$ or $\frac{A}{r^{2}}=4-\pi$		3	M1
	$r^{2}=\frac{A}{4-\pi}$			M1 for isolating r^{2}
		$\sqrt{\frac{A}{4-\pi}}$		A1 Also accept $\pm \sqrt{\frac{A}{4-\pi}}$
				Total 3 marks

Question	Working	Answer	Mark	Notes
6.	$y^{2}=\frac{2 x+1}{x-1}$			M1
$y^{2}(x-1)=2 x+1$				
$y^{2} x-y^{2}=2 x+1$				
$y^{2} x-2 x=y^{2}+1$		squaring both sides to get a correct equation removing denominator to get a correct equation		
		$x=\frac{y^{2}+1}{y^{2}-2}$ oe	4	A1

Question	Working	Answer	Mark	Notes
7. (a)				M1 $(2 t \pm 1)(t \pm 3)$ or $(2 t \pm 3)(t \pm 1)$ NB. Accept $1 t$ in place of t
	$b x^{2}=a-y$ or $-b x^{2}=y-a$	$(2 t-1)(t-3)$	2	A1 cao
	$x^{2}=\frac{a-y}{b}$ or $x^{2}=\frac{y-a}{-b}$ or $x^{2}=-\frac{y-a}{b}$		M1 for isolating $b x^{2}\left(\right.$ or $\left.-b x^{2}\right)$	
				M1 for isolating x^{2}

8.	$\frac{A}{4 \pi}=r^{2}$		M1	
		$\sqrt{\frac{A}{4 \pi}}$	2	A1 accept equivalents eg. $\frac{\sqrt{A \pi}}{2 \pi}, \frac{1}{2} \sqrt{\frac{A}{\pi}}$

9.	$5 t-5 g=2 t+7$			M1	for expanding bracket within the equation or division of all terms by 5
	$5 t-2 t=7+5 g$			M1	(ft a 4 term equation) to isolate terms in t
		$t=\frac{5 g+7}{3}$	3	A	oe
					Total 3 mar

10.	$4 g-9 e g=7-3 e$ or $3 e-7=9 e g-4 g$			
	$g(4-9 e)=7-3 e$ or $3 e-7=g(9 e-4)$		M1 	Correctly collecting terms in g on one side and everything else on the other.

