Changing the Subject of the Formula

Mark Scheme

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Торіс	Equations, Formulae and Identities
Sub Topic	Changing the subject of the formula (Algebraic manipulation)
Booklet	Mark Scheme

Time Allowed:		46 minutes						
Score:		/38						
Percentage:		/100						
Grade Bounda	ries:							
A*	A	В	С	D	E	U		
>85%	75%	70%	60%	55%	50%	<50%		

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

Question	Working	Answer	Mark	Notes	
1.	3y + 6x - 3 = x + 5y 5x - 3 = 2y oe	(5x-3)/2	3	M1 Multiplying out brackets. M1 dep Correctly collecting like terms, (3 terms needed A1 oe	l here).
					otal 3 marks

2.	$\frac{A}{2\pi r} = r + h \text{ or } A = 2\pi r^2 + 2\pi rh$	$\frac{A}{2\pi r} - r = h \text{ oe}$	2	M1 C rect first step A1 e.g. $\frac{A-2\pi r^2}{2\pi r}$ Give full credit to equivalent
				correct expressions
				Total 2 marks

3.	$t^2 =$			M1 squaring both sides
	$nt^2 = n + 3$			
	$nt^2 - n = 3$ $n(t^2 - 1) = 3$			M1 isolating terms in <i>n</i> M1 factorising
		n =	4	A1 or $n = \frac{3}{(t+1)(t-1)}$ or $n = \frac{-3}{1-t^2}$ or $n = \frac{-3}{(1-t)(1+t)}$
				Total 4 marks

Question	Working	Answer	Mark	Notes
4.	$y^2 = ay^2 + n$		5	M1
	$y^{2} - ay^{2} = n$ or $1 = a + \frac{n}{y^{2}}$ or $1 - a = \frac{n}{y^{2}}$			M1 isolate terms in y^2 or divide through by y^2
	$y^2(1-a) = n$			M1 take out y^2 as a common factor
	$y^2 = \frac{n}{1-a}$			M1 y^2 as subject
		$\sqrt{\frac{n}{1-a}}$		A1 accept $\sqrt{\frac{-n}{a-1}}$
				Total 5 marks

Question	Working	Answer	Mark	Notes
5.	$A = (4 - \pi)r^2$ or $\frac{A}{r^2} = 4 - \pi$		3	M1
	$r^2 = \frac{A}{4 - \pi}$			M1 for isolating r^2
		$\sqrt{rac{A}{4-\pi}}$		A1 Also accept $\pm \sqrt{\frac{A}{4-\pi}}$
				Total 3 marks

Question	Working	Answer	Mark	Notes	
6	$y^2 = \frac{2x+1}{x+1}$			M1	squaring both sides to get a correct equation
0.	$y^{2} (x-1) = 2x + 1$ $y^{2} (x-y^{2}) = 2x + 1$			M1	removing denominator to get a correct equation
	$y^2 x - 2x = y^2 + 1$			M1	correctly gathering x s on one side of a correct equation with non x terms on the other side
		$x = \frac{y^2 + 1}{y^2 - 2}$ oe	4	Al	
					Total 4 marks

Question	Working	Answer	Mark	Notes
7 (a)				M1 $(2t \pm 1)(t \pm 3)$ or $(2t \pm 3)(t \pm 1)$
7. (a)				NB. Accept $1t$ in place of t
		(2t-1)(t-3)	2	A1 cao
(b)	$bx^2 = a - y \text{or} -bx^2 = y - a$			M1 for isolating bx^2 (or $-bx^2$)
	$x^{2} = \frac{a - y}{b}$ or $x^{2} = \frac{y - a}{-b}$ or $x^{2} = -\frac{y - a}{b}$			M1 for isolating x^2
		$x = \pm \sqrt{\frac{a - y}{b}}$	3	A1 or $x = \pm \sqrt{\frac{y-a}{-b}}$ or $x = \pm \sqrt{-\frac{y-a}{b}}$
				(condone omission of ±)
				Total 5 marks

9.	5t - 5g = 2t + 7			M1	for expanding bracket within the equation or division of all terms by 5
	5t - 2t = 7 + 5g			M1	(ft a 4 term equation) to isolate terms in <i>t</i>
		$t = \frac{5g + 7}{3}$	3	A	0e
					Total 3 marks

10.	4g - 9eg = 7 - 3e or $3e - 7 = 9eg - 4g$			M1	Correctly collecting terms in <i>g</i> on one side and everything else on the other.
	g(4-9e) = 7-3e or $3e-7 = g(9e-4)$			M1	Factorising $g(4-9e)$ or $g(9e-4)$
		$g = \frac{7-3e}{4-9e} \text{ or}$ $g = \frac{3e-7}{9e-4}$	3	A1	
					Total 3 marks

11.	m(t-3) = t+1 or		4	M1	clearing fraction
	mt - 3m = t + 1				
	e.g.			M1	for expanding bracket
	mt - t = 1 + 3m or				AND
	t - mt = -1 - 3m				rearranging so that all terms in <i>t</i> are isolated on one
					side of a correct equation
	t(m-1) or			M1	take <i>t</i> out as a common factor (in an equation)
	t(m-1) or $t(1-m)$				
		$t = \frac{3m+1}{2m+1}$		A1	$\mathbf{or} \ t = \frac{-3m - 1}{1 - m} \ \mathbf{oe}$
		m-1			1-m
					Total 4 marks