For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

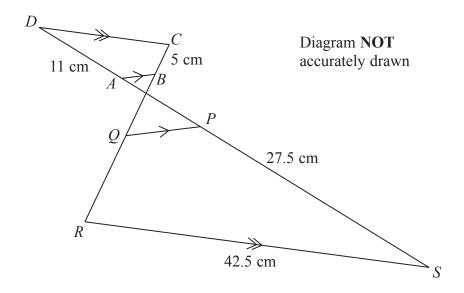
Similarity

Question Paper 2

Level	IGCSE							
Subject	Maths							
Exam Board	Edexcel							
Topic	Shape, Space and Measures							
Sub Topic	Similarity							
Booklet	Question Paper 2							

Time Allowed: 57 minutes

Score: /47


Percentage: /100

Grade Boundaries:

A*	Α	В	С	D	E	U
>85%	75%	70%	60%	55%	50%	<50%

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 In the diagram, DAPS and CBQR are straight lines. AB is parallel to QP and DC is parallel to RS. AD = 11 cm, BC = 5 cm, PS = 27.5 cm and RS = 42.5 cm.

Quadrilateral ABCD is similar to quadrilateral PQRS.

(a) Find the ratio of the length of AB to the length of PQ. Give your answer in the form 1:n

1:....(2)

(b) Work out the length of *RQ*.

(2)

(c) Work out the length of CD.

..... cm

The area of quadrilateral ABCD is 54 cm²

(d) Work out the area of quadrilateral PQRS.

	cm ²
	(2)

(Total for Question 1 is 8 marks)

2 The diagram shows triangle *ADC*.

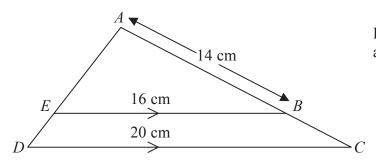


Diagram **NOT** accurately drawn

E is a point on AD and B is a point on AC so that EB is parallel to DC.

AB = 14 cm.

EB = 16 cm.

DC = 20 cm.

Calculate the length of BC.

(Total for Question 2 is 3 marks)

3	Rob is making a scale model of the Solar System on the school field. He wants the distance from the Sun to Jupiter to be 8 metres on his scale model.
	The real distance from the Sun to Jupiter is 7.8×10^8 kilometres.
	(a) Find the scale of the model. Give your answer in the form 1: <i>n</i> , where <i>n</i> is written in standard form.
	1:(3)
	Rob wants to put the position of a space probe on the scale model. The real distance of the space probe from the Sun is 1.9×10^{10} kilometres, correct to 2 significant figures.
	(b) Work out the maximum distance of the space probe from the Sun on the scale model. Give your answer in metres.
	(Total for Question 3 is 6 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

4

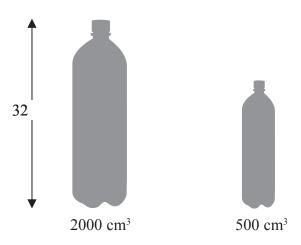
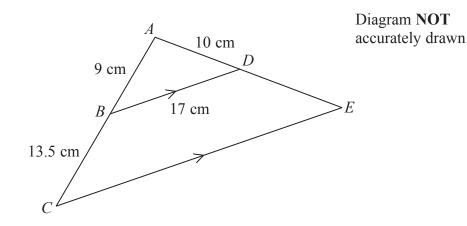


Diagram **NOT** accurately drawn


Zane buys mineral water in large bottles and in small bottles. The large bottles are mathematically similar to the small bottles. Large bottles have a height of 32 cm and a volume of 2000 cm³ Small bottles have a volume of 500 cm³

Work out the height of a small bottle. Give your answer correct to 3 significant figures.

..... cm

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

5

In the diagram ABC and ADE are straight lines. BD is parallel to CE.

$$AB = 9$$
 cm, $BC = 13.5$ cm, $AD = 10$ cm, $BD = 17$ cm

(a) Calculate the length of CE.

(2) cm

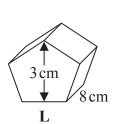
(b) Calculate the length of *DE*.

(2) cm

The area of triangle ABD is 36 cm²

(c) Calculate the area of quadrilateral BDEC.

(3)


6 The ocean liner Queen Mary 2 is the longest of its type. It has a length of 345 metres.

A scale model is made of the Queen Mary 2 The scale of the model is 1:200

Work out the length of the scale model. Give your answer in centimetres.

7 L and M are two mathematically similar prisms.

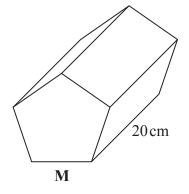


Diagram NOT accurately drawn

Prism L has length 8 cm. Prism M has length 20 cm.

Prism L has height 3 cm.

(a) Work out the height of prism M.

(2)

Prism M has a volume of 1875 cm³

(b) Work out the volume of prism L.

..... cm³ (2)

(Total for Question 7 is 4 marks)

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

8 *PQRS* and *PLMN* are similar quadrilaterals.

PN = 12 cm, NS = 8 cm, PL = 9 cm and RS = 13.5 cm.

LM is parallel to QR and MN is parallel to RS.

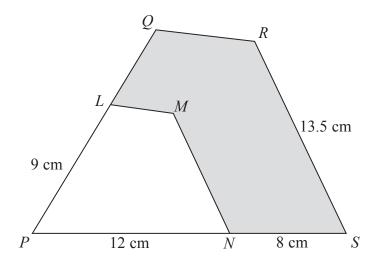


Diagram **NOT** accurately drawn

(a) Work out the length of MN.

..... cm (2)

(b) Work out the length of LQ.

(2)

The area of $PLMN$ is $A \text{ cm}^2$		
The area of $PQRS$ is kA cm ²		
(c) Find the value of k .		
	<i>k</i> =	(4)
		(1)
The area of the shaded region is 105.6 cm ²		
(d) Work out the value of A.		
	$A = \dots$	(3)
		(3)

(Total for Question 8 is 8 marks)

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

9

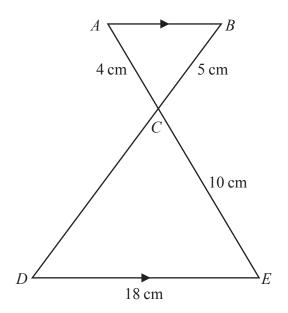


Diagram **NOT** accurately drawn

ACE and BCD are straight lines. AB is parallel to DE.

(a) Calculate the length of CD.

 -		 	-			 		 														 	 (С	ľ	ľ	1	L
													(1	2))											

(b) Calculate the length of AB.

(2)

The area of triangle $ABC = T \text{ cm}^2$

(c) Find the area of triangle *CDE* in terms of *T*.

.....cm²