Polygons
 Mark Scheme 2

Level	IGCSE
Subject	Maths
Exam Board	Edexcel
Topic	Shape, Space and Measures
Sub Topic	Polygons
Booklet	Mark Scheme 2

Time Allowed:	$\mathbf{4 2}$ minutes
Score:	/35
Percentage:	$/ 100$

Grade Boundaries:

A*	A	B	C	D	E	U
$>85 \%$	75%	70%	60%	55%	50%	$<50 \%$

Ques	Working	Answer	Mark	Notes
$\mathbf{1}$ a	1 2 $(14+20) \times 8$ or $8 \times 14+\frac{1}{2} \times 6 \times 8$		M1 for a complete method	
		136		A1
			4	M1
b	$20-14(=6)$			M1 dep on previous M1
	$' 6^{\prime 2}+8^{2}$ or $36+64$ or 100			M1 dep on previous M1
	$\sqrt{\left(6^{\prime 2}+8^{2}\right)}$	10		A1
			Total 6 marks	

2 (a)	$\begin{aligned} & 360 \div 15 \text { or } \\ & \frac{(n-2) 180}{n}=180-15 \mathrm{oe} \end{aligned}$		2	M1
		24		A1
(b)	$3 \times 180 / 5$ or ($180-360 \div 5$) (=108)		3	M1 must be no contradiction on diagram or in working
	$360-3 \times 108$ "			M1 dep
		36		A1
	$\begin{aligned} & \text { Alternative for (b): } \\ & 360 / 5(=72) \end{aligned}$			M1 must be no contradiction on diagram or in working
	(180-"72"×2)			M1 dep
		36		A1

3. (a)	$\text { angle } M R Q(\text { or } R M Q)=x \text { or } \frac{180-y}{2}$	$180-2 x$	2	M1 A1	could be marked on diagram or for a correct equation in x and y $\text { oe eg } 2(90-x), 2(180-x)-180$ etc
(b)	$(6-2) \times 180 \text { oe }(=720)$ $\begin{aligned} & " 720 \text { " }-(90+115+144+87),[720-436] \text { or } 284 \\ & " 284 \text { " } \div 2 \end{aligned}$	142	4	M1 M1dep M1dep A1	$\text { or }(180-360 \div 6) \times 6$
	Alternative				
	$\begin{aligned} & 180-90(=90), 180-115(=65), 180-144(=36), \\ & 180-87(=93) \\ & 360-(" 90 "+" 65 "+\cdots 36 "+" 93 "),[360-284](=76) \\ & 180-(" 76 " \div 2) \end{aligned}$	142	4	M1 M1dep M1dep A1	A correct method to find each of the exterior angles at A,C,D \& Eangles could be seen on diagram. A correct method to find the total of the remaining exterior angles A correct method to find k
					Total 6 marks

4.	$180-\frac{360}{10} \text { or } \frac{(10-2) \times 180}{10} \text { or } 144 \mathrm{oe}$	108	4	M1	Unless inconsistently labelled
	$\frac{180-' 144 '}{2} \text { or } 18$			M1	Or M2 for $144-(180-144)$
	${ }^{\prime} 144{ }^{\prime}-2 \times 18$ '			M1	
				A1	
	Alternative				
	Pentagon approach - drawing in a pentagon or a statement recognising that the required angle is one of a regular pentagon		4	M1	May be implied by further work
	$180-\frac{360}{5} \text { or } \frac{(5-2) \times 180}{5}$			M2	(M1 for exterior angle of pentagon as long as not seen as interior angle or given as answer)
		108		A1	dep on M1
					Total 4 marks

Q	Working	Answer	Mark	Notes		
5.	360 or $180-$$(8-2) \times 180$ 8 8			2		M1
:---						

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6. (a) \& \& 63 \& 1 \& B1 \& \\
\hline (b) \& \& 50 \& 1 \& B1 \& \\
\hline (c) \& \begin{tabular}{l}
Eg \((6-2) \times 180\) or \(4 \times 180\) or 720 oe \\
\(\operatorname{Eg} 3 x+x+164+139+97+156=720\) or \(4 x+556=720\) oe or \(\frac{" 720 "-(164+139+97+156)}{4}\) or \(\frac{720 "-556}{4}\) or \(\frac{164}{4}\) oe
\end{tabular} \& 41 \& 3 \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
For complete method to find the total of interior angles or 720 Dep \\
For a correct equation using their 720 or \\
For a complete numerical method
\end{tabular} \\
\hline \& Alternative Method
\[
\begin{aligned}
\& \operatorname{Eg} 180-156+180-139+180-164+180-97+180-x+ \\
\& 180-3 x=360 \text { or } \\
\& 24+41+16+83+180-x+180-3 x=360 \text { or } \\
\& 1080-556-4 x=360
\end{aligned}
\] \& 41 \& 3 \& M2

A1 \& For an equation coming from the correct method relating to the sum of exterior angles.

\hline \& \& \& \& \& Total 5 marks

\hline
\end{tabular}

7.	a	$360-2 \times 111-90$	48	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	A complete method to find angle $A B C$
	b	111-90	21	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	c	$\begin{aligned} & 540-90-90-111-111 \\ & \text { or } 180-2 \times \text { ' } 21 \text { ' } \\ & \text { or } 2 \times(180-111) \\ & \text { or } 360-111=249 \\ & \text { oe } 180-(360-' 21 \text { ' }-249-48) \\ & \hline \end{aligned}$	138	3	M2 A1	For a fully correct method to find angle y or M1 if using pentagon for $(5-2) \times 180(=540)$ or for an isosceles triangle drawn with y at apex or for showing use of parallel lines on diagram
						Total 7 marks

